资源类型

期刊论文 24

年份

2023 1

2022 7

2021 1

2019 2

2016 2

2015 2

2014 3

2012 1

2011 1

2010 2

2007 1

2000 1

展开 ︾

关键词

反渗透 2

耐氯性 2

聚酰胺 2

GDM过滤技术 1

亲水性 1

含氯化肥 1

植物氯营养 1

氧化石墨烯 1

水处理 1

海水淡化 1

混合基质膜 1

生物膜 1

耐氯力类型 1

耐氯细菌 1

膜材料 1

膜污染 1

超滤 1

展开 ︾

检索范围:

排序: 展示方式:

Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 564-591 doi: 10.1007/s11705-021-2109-z

摘要: Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.

关键词: reverse osmosis     polyamide     thin film composite membranes     chlorine resistance     surface modification    

Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small

Roberta DYCK,Geneviève COOL,Manuel RODRIGUEZ,Rehan SADIQ

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 171-179 doi: 10.1007/s11783-014-0750-1

摘要: Seasonal variability in source water can lead to challenges for drinking water providers related to operational optimization and process control in treatment facilities. The objective of this study is to investigate seasonal variability of water quality in municipal small water systems (<3000 residents) supplied by surface waters. Residual chlorine and trihalomethanes (THM) were measured over seven years (2003–2009). Comparisons are made within each system over time, as well as between systems according to the type of their treatment technologies. THM concentrations are generally higher in the summer and autumn. The seasonal variability was generally more pronounced in systems using chlorination plus additional treatment. Chloroform, total THM (TTHM) and residual chlorine concentrations were generally lower in systems using chlorination plus additional treatment. Conversely, brominated THM concentrations were higher in systems using additional treatment. Residual chlorine was highest in the winter and lowest in the spring and summer. Seasonal variations were most pronounced for residual chlorine in systems with additional treatment. There was generally poor correlation between THM concentrations and concentrations of residual chlorine. Further study with these data will be beneficial in finding determinants and indicators for both quantity and variability of disinfection byproducts and other water quality parameters.

关键词: drinking water     residual chlorine     seasonal variability     small municipal systems     treatment technologies     trihalomethanes    

Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1510-7

摘要:

• 2,6-DCBQ and TCBQ generated THMs differently in chlorine and UV/chlorine processes.

关键词: Halobenzoquinone     Trihalomethane     Chlorine disinfection     UV irradiation     Disinfection byproducts     Combined UV/chlorine    

Change in genotoxicity of wastewater during chlorine dioxide and chlorine disinfections and the influence

WANG Lisha, HU Hongying, WANG Chao, Koichi Fujie

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 18-22 doi: 10.1007/s11783-007-0003-7

摘要: The effects of chlorine dioxide and chlorine disinfections on the genotoxicity of different biologically treated sewage wastewater samples were studied by umu-test. The experiment results showed that when chlorine dioxide dosage was increased from 0 to 30 mg/L, the genotoxicity of wastewater first decreased rapidly and then tended to be stable, while when the chlorine dosage was increased from 0 to 30 mg/L, the genotoxicity of wastewater changed diver sely for different samples. It was then found that ammonia nitrogen did not affect the change of genotoxicity during chlorine dioxide disinfection of wastewater, while it greatly affected the change of genotoxicity during chlorine disin fection of wastewater. When the concentration of ammonia nitrogen was low (< 10 20 mg/L), the genotoxicity of wastewater decreased after chlorine disinfection, and when the concentration of ammonia nitrogen was high (> 10 20 mg/L), the genotoxicity of wastewater increased after chlorine disinfection.

Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination

Wenjun LIU, Shaoying QI,

《环境科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 65-72 doi: 10.1007/s11783-010-0010-y

摘要: This study presents a phenomenological model that can be used by the water professionals to quantify chlorine decay and disinfection byproduct (DBP) formation in water. The kinetic model was developed by introducing the concept of limiting chlorine demand and extending an established reactive species approach. The limiting chlorine demand, which quantifies chlorine reactive natural organic matter (NOM) on an equivalent basis, was mathematically defined by the relation between ultimate chlorine residue and initial chlorine dose. It was found experimentally that NOM in water has limiting chlorine demand that increases with chlorine dose once the ultimate residue is established. These results indicated that the complex NOM has a unique ability to adjust chemically to the change in redox condition caused by the free chlorine. It is attributed mainly to the redundant functional groups that persist in heterogeneous NOM molecules. The results also demonstrated that the effect of chlorine dose on the rate of chlorine decay can be quantitatively interpreted with the limiting chlorine demand. The kinetic model developed was validated for chlorine decay and chloroacetic acid formation in finished drinking water.

关键词: chlorine demand     chlorine decay     chloroacetic acids     disinfection byproducts     model    

植物氯素营养与含氯化肥科学施用

毛知耘,周则芳,石孝均,刘洪斌

《中国工程科学》 2000年 第2卷 第6期   页码 64-66

摘要:

文章主要概述了植物的氯素营养及科学施用含氯化肥三准则。

关键词: 植物氯营养     耐氯力类型     含氯化肥    

Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers for chlorine

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1183-1195 doi: 10.1007/s11705-022-2287-3

摘要: Improving the performance of reverse osmosis membranes remains great challenge to ensure excellent NaCl rejection while maintaining high water permeability and chlorine resistance. Herein, temperature-responsive intelligent nanocontainers are designed and constructed to improve water permeability and chlorine resistance of polyamide membranes. The nanocontainer is synthesized by layer-by-layer self-assembly with silver nanoparticles as the core, sodium alginate and chitosan as the repair materials, and polyvinyl alcohol as the shell. When the polyamide layer is damaged by chlorine attack, the polyvinyl alcohol shell layer dissolves under temperature stimulation of 37 °C, releasing inner sodium alginate and chitosan to repair broken amide bonds. The polyvinyl alcohol shell responds to temperature in line with actual operating environment, which can effectively synchronize the chlorination of membranes with temperature response and release inner materials to achieve self-healing properties. With adding temperature-responsive intelligent nanocontainers, the NaCl rejection of thin film composite membrane decreased by 15.64%, while that of thin film nanocomposite membrane decreased by only 8.35% after 9 chlorination cycles. Effective repair treatment and outstanding chlorine resistance as well as satisfactory stability suggest that temperature-responsive intelligent nanocontainer has great potential as membrane-doping material for the targeted repair of polyamide reverse osmosis membranes.

关键词: reverse osmosis     nanocontainer     self-healing     chlorine resistance     water permeability    

Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal

Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA

《环境科学与工程前沿(英文)》 2016年 第10卷 第4期 doi: 10.1007/s11783-016-0847-9

摘要: Industrial waste mixed with MSW is the main source of heavy metal in bottom ash. Chlorine content in bottom ash is controlled both by plastic and kitchen waste. Insoluble chlorine in Chinese MSWI bottom ash exists primarily as AlOCl. Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250℃) in incinerators.

关键词: Bottom ash     Chlorine     Heavy metals     Waste inputs     Synchrotron X-ray diffraction     AlOCl    

Effect of the ultraviolet/chlorine process on microbial community structure, typical pathogens, and antibiotic

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1521-z

摘要:

• UV/chlorine can effectively remove VBNC pathogens, ARGs and MGEs in reclaimed water.

关键词: UV/chlorine process     Pathogen     Antibiotic resistance genes     High-throughput qPCR     Reclaimed water    

Characterization of chlorine dioxide as disinfectant for the removal of low concentration microcystins

Mingsong WU, Junli HUANG, Yuling ZHANG, Shijie YOU, Shaofeng LI, Zhilin RAN, Yu TIAN

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 75-81 doi: 10.1007/s11783-011-0331-5

摘要: Microcystins, which represents one kind of cancerogenic organic compounds, is abundant in eutrophication water. The effects of reaction factors on chlorine dioxide (ClO ) for removal of low-concentration Microcystin-LR, Microcystin-RR, and Microcystin-YR in water as well as the reaction mechanisms was investigated by using enzyme-linked immunosorbent assay (ELISA) kit and gas chromatography–mass spectrometry (GC-MS). The results showed that MC-LR, MC-RR, and MC-YR could be efficiently decomposed by ClO . The degradation efficiency was shown positively correlated to the concentration of ClO and reaction time; while the effect of reaction temperature and pH is slight. The kinetic constants and activation energies of the reaction of MC-LR, MC-RR, and MC-YR with ClO are determined as 459.89, 583.15, 488.43 L·(mol·min) and 64.78, 53.01, 59.15 kJ·mol , respectively. As indicated by high performance liquid chromatography mass spectrometer (HPLC-MS) analysis, degradation should be accomplished via destruction of Adda group by oxidation, with the formation of dihydroxy substituendums as end products. This study has provided a fundamental demonstration of ClO serving as oxidizing disinfectant to eliminate microcystins from raw water source.

关键词: disinfection     chlorine dioxide     microcystins     reaction mechanism    

Speciation evolutions of target metals (Cd, Pb) influenced by chlorine and sulfur during sewage sludge

Jingde LUAN,Rundong LI,Zhihui ZHANG,Yanlong LI,Yun ZHAO

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 871-876 doi: 10.1007/s11783-013-0621-1

摘要: In sludge incineration, the thermal behavior of heavy metal is a growing concern. In this work, the combined analysis of metal partitioning behavior between vapor phase and condensed phase, speciation redistribution in condensed phase and the difference of metal species in binding energy was carried out to investigate the possible volatilization-condensation mechanism of heavy metals in high-temperature sludge incineration. It was found that there were two steps in metal volatilization. The initial volatilization of heavy metal originated from their exchangeable (EXC), carbonate bound (CAR) and iron–manganese bound (FM) fractions, which is primarily composed of simple substance, chlorides, oxides and sulfides. With the increase of chlorine and sulfur in sludge, the inner speciation redistribution of heavy metals occurred in condensed phase, which was an important factor affecting the potential volatility of heavy metals. A partial of metal species with complexed (COM) and residual (RES) fractions gradually decomposed into simple substance or ions, oxides and carbonates, which significantly strengthened the second volatility. In presence of chlorine, about 46% of Cd with the RES fraction disappeared when the volatility rate of Cd increased by 44.89%. Moreover, about 9% of Pb with COM fraction disappeared when there was an increase of nearly 10% in the volatilization rate. Thus, the second volatilization was mainly controlled by the decomposition of metal species with COM and RES fractions. By virtue of XRD analysis and the binding energy calculation, it was found that metal complex and silicates were inclined to decompose under high temperature due to poor thermo stability as compared with sulfates.

关键词: sludge incineration     heavy metals     inner speciation redistribution     binding energy    

Flow cytometric assessment of the effects of chlorine, chloramine, and UV on bacteria by using nucleic

Xuebiao Nie, Wenjun Liu, Mo Chen, Minmin Liu, Lu Ao

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0884-4

摘要: Flow cytometry based on nucleic acid stains and CTC was established and optimized. Membrane of is more resistant to chlorine/chloramine than . The metabolic activity of bacteria persisted after the cytomembranewas damaged. showed more resistance to UV irradiation than by FCM. MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of and by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10% R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive was more resistant to chlorine/chloramine than that of Gram-negative . In addition, showed higher resistance to UV irradiation than .

关键词: Flow cytometry     Escherichia coli     Staphylococcusaureus     UV     CTC     SYTO 9    

Impact of total organic carbon and chlorine to ammonia ratio on nitrification in a bench-scale drinking

Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 430-437 doi: 10.1007/s11783-010-0247-5

摘要: Nitrification occurs in chloraminated drinking water systems and is affected by water quality parameters. The aim of this study was to investigate the impact of total organic carbon and chlorine to ammonia ratio on nitrification potential in a simulated drinking water distribution system as during chloramination. The occurrence of nitrification and activity of nitrifying bacteria was primarily monitored using four rotating annular bioreactors (RAB) with different chlorine to ammonia ratios and total organic carbon (TOC) levels. The results indicated that nitrification occurred despite at a low influent concentration of ammonia, and a high concentration of nitrite nitrogen was detected in the effluent. The study illustrated that reactors 1(R1) and 3 (R3), with higher TOC levels, produced more nitrite nitrogen, which was consistent with the ammonia-oxidizing bacteria (AOB) counts, and was linked to a relatively more rapid decay of chloramines in comparison to their counterparts (R2 and R4). The AOB and HPC counts were correlated during the biofilm formation with the establishment of nitrification. Biofilm AOB abundance was also higher in the high TOC reactors compared with the low TOC reactors. The chlorine to ammonia ratio did not have a significant impact on the occurrence of nitrification. Bulk water with a high TOC level supported the occurrence of nitrification, and AOB development occurred at all examined chlorine to ammonia dose ratios (3∶1 or 5∶1).

关键词: nitrification     drinking water     ammonia- oxidizing bacteria (AOB)     chloramines     organic carbon     heterotrophic bacteria    

An overview and recent advances in electrocatalysts for direct seawater splitting

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1408-1426 doi: 10.1007/s11705-021-2102-6

摘要: In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

关键词: seawater splitting     electrocatalysts     oxygen evolution reaction     hydrogen evolution reaction     chlorine chemistry    

海水淡化反渗透耐氯膜材料的研究与制备进展

黄海,张林,侯立安

《中国工程科学》 2014年 第16卷 第7期   页码 89-94

摘要:

反渗透是重要的海水淡化技术,本文针对反渗透膜易被水中活性氯破坏导致性能下降的问题,介绍了聚酰胺反渗透膜氯化降解理论,并深入探讨了国内外对耐氯反渗透膜材料的研究与开发现状,讨论了耐氯反渗透膜的研究方向和发展前景。

关键词: 海水淡化     水处理     反渗透     聚酰胺     耐氯性     膜材料    

标题 作者 时间 类型 操作

Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse

期刊论文

Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small

Roberta DYCK,Geneviève COOL,Manuel RODRIGUEZ,Rehan SADIQ

期刊论文

Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine

期刊论文

Change in genotoxicity of wastewater during chlorine dioxide and chlorine disinfections and the influence

WANG Lisha, HU Hongying, WANG Chao, Koichi Fujie

期刊论文

Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination

Wenjun LIU, Shaoying QI,

期刊论文

植物氯素营养与含氯化肥科学施用

毛知耘,周则芳,石孝均,刘洪斌

期刊论文

Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers for chlorine

期刊论文

Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal

Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA

期刊论文

Effect of the ultraviolet/chlorine process on microbial community structure, typical pathogens, and antibiotic

期刊论文

Characterization of chlorine dioxide as disinfectant for the removal of low concentration microcystins

Mingsong WU, Junli HUANG, Yuling ZHANG, Shijie YOU, Shaofeng LI, Zhilin RAN, Yu TIAN

期刊论文

Speciation evolutions of target metals (Cd, Pb) influenced by chlorine and sulfur during sewage sludge

Jingde LUAN,Rundong LI,Zhihui ZHANG,Yanlong LI,Yun ZHAO

期刊论文

Flow cytometric assessment of the effects of chlorine, chloramine, and UV on bacteria by using nucleic

Xuebiao Nie, Wenjun Liu, Mo Chen, Minmin Liu, Lu Ao

期刊论文

Impact of total organic carbon and chlorine to ammonia ratio on nitrification in a bench-scale drinking

Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI

期刊论文

An overview and recent advances in electrocatalysts for direct seawater splitting

期刊论文

海水淡化反渗透耐氯膜材料的研究与制备进展

黄海,张林,侯立安

期刊论文